Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

μ-Chloro-bis\{[benzylbis(2-pyridyl-methyl)amine- $\kappa^{3} N$]chlorocopper(II)\} perchlorate hemihydrate

Yoshiyuki Kani, ${ }^{\text {a }}$ Shigeru Ohba, ${ }^{\text {a* }}$ Sayo Ito ${ }^{\mathbf{b}}$ and Yuzo Nishida ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan, and ${ }^{\mathbf{b}}$ Institute for Molecular Science, Myodaijimachi, Okazaki 444-8585, Japan
Correspondence e-mail: ohba@chem.keio.ac.jp
Received 4 April 2000
Accepted 11 April 2000

Data validation number: IUC0000106
In the title dinuclear $\mathrm{Cu}^{\text {II }}$ compound, $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{3}\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3}\right)_{3}\right]$ $\mathrm{ClO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, the coordination geometry around the Cu atoms is square pyramidal, with the bridging Cl atom at the apical positions. The $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}$ angle is $136.9(1)^{\circ}$ and the $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is 4.961 (1) \AA.

Comment

The abbreviation for the tridentate benzyl(2-pyridylmethyl)amine ligand in the title compound, (I), is bzpy and that of its 2-hydroxy derivative is phpyH. In the crystals of $[\mathrm{Cu}(\mathrm{ph}-$ $\mathrm{pyH}) \mathrm{Cl}] \mathrm{ClO}_{4} \cdot \mathrm{CH}_{3} \mathrm{OH}$, which is a model compound for galactose oxidase, a rather long $\mathrm{Cu}^{\mathrm{II}}$-phenolic oxygen distance of 2.570 (4) \AA was observed (Ito et al., 1998).

(I)

Experimental

The preparation of the bzpy ligand and its chlorocopper(II) complex was carried out by an analagous method to that described previously by Ito et al. (1998). Crystals of the title compound, $\left[\mathrm{Cu}_{2}(\text { bzpy })_{2} \mathrm{Cl}_{3}\right]-$ $\mathrm{ClO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, were grown from an $\mathrm{MeOH} / \mathrm{CH}_{3} \mathrm{CN}$ solution.

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{Cl}_{3}\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \quad Z=2$
$M_{r}=920.67$
Triclinic, $P \overline{1}$
$a=13.799(2) \AA$
$b=14.488(2) \AA$
$D_{x}=1.524 \mathrm{Mg} \mathrm{m}^{-3}$
$c=12.608$ (2) \AA
$\alpha=99.33(1)^{\circ}$
$\beta=111.86(1)^{\circ}$
$\gamma=113.14(1)^{\circ}$
$V=2005.9(6) \AA^{3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=10-15^{\circ}$
$\mu=1.376 \mathrm{~mm}^{-1}$
$T=300 \mathrm{~K}$
Sphere, blue
0.3 mm (radius)

Data collection
Rigaku AFC-5S diffractometer

$$
R_{\mathrm{int}}=0.012
$$

$\theta-2 \theta$ scans
$\theta_{\text {max }}=27.5^{\circ}$
Absorption correction: spherical
(International Tables for Crystal-
$h=0 \rightarrow 18$
lography, 1992, Vol. C)
$T_{\text {min }}=0.545, T_{\text {max }}=0.552$
9581 measured reflections
9196 independent reflections
6985 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$k=-19 \rightarrow 19$
$l=-16 \rightarrow 16$
3 standard reflections every 100 reflections intensity decay: 4.3%
$R(F)=0.040$
H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\left\{0.1\left(F_{o}{ }^{2}\right.\right.\right.$
$\left.\left.\left.+2 F_{c}^{2}\right) / 3\right\}^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\text {max }}=0.42 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.35 \mathrm{e} \AA^{-3}$
$S=1.02$
9196 reflections
493 parameters

2.252 (1)

$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$165.1(1)$	$\mathrm{N} 4-\mathrm{Cu} 2-\mathrm{N} 6$	$164.5(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$163.3(1)$	$\mathrm{Cu} 1-\mathrm{Cl} 3-\mathrm{Cu} 2$	$136.9(1)$
$\mathrm{Cl} 2-\mathrm{Cu} 2-\mathrm{N} 5$	$153.4(1)$		

The water O atom lies on an inversion centre and the water H atoms were not introduced. Positional parameters of all the other H atoms were calculated geometrically and fixed with $U(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.
Ito, S., Nishino, S., Itoh, H., Ohba, S. \& Nishida, Y. (1998). Polyhedron, 17, 1637-1642.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1999). TEXSAN. Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

